Стрелка компаса является магнитом.

Стрелка компаса является свободно-расположенным магнитом. Большинство видов компасов имеют различные отметки на стрелке, которые указывают, какой конец является северным полюсом. Обычно одна половина стрелки окрашена для индикации северного полюса. Но будьте внимательны: иногда полюса стрелки компаса непредумышленно перепутаны.
Для того, чтобы использовать компас, нужно дождаться, чтобы стрелка компаса остановилась. Окрашенный конец стрелки должен указывать на географический Север. Медленно поверните основание компаса до тех пор, пока буква «N”, отпечатанная на верхней (или боковой) поверхности основания, не совместилась с концом стрелки, указывающим на Север. Теперь можно посмотреть на компас, чтобы определить направления на Север, Восток, Юг и Запад.
Окружность компаса обычно поделена на 360 равных частей, известных как градусы. Измерения с помощью компаса обычно начинаются с 0 градусов, что соответствует Северу. Тогда Восток – это 90 градусов, Юг – 180 градусов и Запад – 270 градусов. (Север – это как 0 так и 360 градусов). Градусы обычно символизируют маленьким ноликом после и немного выше измеряемой величины, например: 360º.
Когда используете компас, убедитесь, что поблизости нет магнитов или магнитных материалов, которые могут влиять на направление стрелки компаса.

Магнитные свойства постоянных магнитов, их способность притягивать железные предметы были известны еще древним грекам. Земля также является магнитом и явления земного магнетизма были использованы ещё древними китайцами 3000 лет тому назад для создания подобия компаса, т.е. свободно вращающейся магнитной стрелки, указывающей ориентацию сторон света. Китайские мореплаватели использовали компас в XI веке, в Европе подобные устройства появились лишь в XII веке.

В пространстве, окружающем намагниченные тела, возникает магнитное поле. Помещенная в это поле маленькая магнитная стрелка устанавливается в каждой его точке вполне определенным образом, указывая тем самым направление поля. Тот конец стрелки, который в магнитном поле Земли указывает на север, называется северным, а противоположный – южным.

Хорошо известно, что, если поднести два магнита друг к другу, между ними действует сила. Магниты либо притягивают друг друга, либо отталкивают; их взаимодействие ощущается даже тогда, когда магниты не соприкасаются. Если к северному полюсу одного магнита поднести северный полюс другого, магниты будут отталкиваться; то же самое будет, если поднести магниты друг к другу южными полюсами. Но если к северному полюсу одного магнита поднести южный полюс другого, возникает притяжение. Это напоминает взаимодействие электрических зарядов: одноименные полюса отталкиваются, а разноименные притягиваются. Но не следует смешивать полюса магнитов и электрические заряды – это совсем разные вещи.

Другие аудио-видео демонстрации по теме или смежным темам: 1. Силовые линии магнитов. 2. Линии магнитной индукции. 3. Намагниченность. 4. Электромагниты. 5. Компас.

Вернемся к примеру с магнитной стрелкой, помещенной в магнитное поле. При отклонении стрелки от направления магнитного поля, на стрелку действует механический крутящий момент , пропорциональный синусу угла отклонения α и стремящийся повернуть ее вдоль указанного направления. Таким образом, при взаимодействии постоянных магнитов они испытывают результирующий момент сил, но не силу. Подобно электрическому диполю, постоянный магнит в однородном поле стремится повернуться по полю, но не перемещаться в нем.

Существенное отличие постоянных магнитов от электрических диполей заключается в следующем. Электрический диполь всегда состоит из зарядов, равных по величине и противоположных по знаку. Эти заряды можно отделить друг от друга и расположить на отдельных телах, например, разрезав диполь пополам по плоскости, перпендикулярной оси диполя. Постоянный же магнит, будучи разрезан таким образом пополам, превращается в два меньших магнита, каждый из которых имеет и северный и южный полюса. Никакое деление не дает возможности получить отдельно источники северного и южного магнетизма – магнитные заряды. Причина состоит в том, что «магнитных зарядов» (или, как иногда говорят, «магнитных масс») в природе не существует.

Подводя итоги сведениям о магнетизме, накопленным к 1600 г., английский ученый-физик Уильям Гильберт в труде «О магните, магнитных телах и большом магните – Земле» высказал мнение, что, несмотря на некоторое внешнее сходство, природа электрических и магнитных явлений различна. Действительно, кроме вышеуказанного отличия, опыт показывает, что если расположить вблизи магнитной стрелки компаса легкий заряженный шарик, то мы не обнаружим никакого действия со стороны заряда шарика на магнитную стрелку. В свою очередь, магнитное поле стрелки никак не действует на заряженный шарик. Все же, к середине XVIII века, окрепло убеждение о наличии тесной связи между электрическими и магнитными явлениями. Однако природа этой тесной связи тогда установлена быть не могла из-за отсутствия достаточно мощных источников тока.

В 1820 году Эрстед открыл явление отклонения магнитной стрелки гальваническим током и тем самым сделал первый существенный шаг в выяснении характера связи электрических и магнитных явлений. Затем Гей-Люссак и Араго наблюдали намагничивание железа постоянным током, идущим в проводнике. Ампер обнаружил притяжение между проводами, по которым проходят параллельные токи, и отталкивание между противоположно направленными токами. Им же была выдвинута гипотеза о том, что свойства постоянных магнитов обусловлены циркулирующими в их толще постоянными круговыми токами (молекулярными токами).

Но вернемся к открытию Эрстеда. Он помещал магнитную стрелку в непосредственной близости от проводника с током и обнаружил, что при протекании по проводнику тока, стрелка отклоняется; после выключения тока стрелка возвращается в исходное положение (рис. 1.1).

Рис. 1.1

Из описанного опыта Эрстед делает вывод: вокруг прямолинейного проводника с током есть магнитное поле. Он обратил внимание также на то, что при изменении направления тока в проводнике северный конец стрелки поворачивается в другую сторону.

В дальнейшем исследовалось действие на магнитную стрелку проводников с током самой различной формы. Был сделан общий вывод: вокруг всякого проводника с током есть магнитное поле.

Но ведь ток – это направленное движение зарядов. Возможно, вокруг всякого движущегося заряда существует магнитное поле? Опыты подтверждают: да, магнитное поле появляется вокруг электронных пучков и вокруг перемещающихся в пространстве заряженных тел.

Итак, вокруг всякого движущегося заряда помимо электрического поля существует еще и магнитное. Магнитное поле – это поле движущихся зарядов. Известно, что оно обнаруживает себя по действию на магнитные стрелки или на проводники с токами, т.е. на движущиеся заряды.

Дальше мы увидим, что, подобно электрическому полю, оно обладает энергией и, следовательно, массой. Магнитное поле материально. Теперь можно дать следующее определение магнитного поля: магнитное поле – это материя, связанная с движущимися зарядами и обнаруживающая себя по действию на магнитные стрелки и движущиеся заряды, помещенные в это поле.

Эрстед изложил результаты своих опытов Амперу, который тут же повторил эти опыты и продолжил их. Он взял катушку с током, намагниченный металлический стержень и обнаружил воздействие магнитного поля катушки на стержень. В этом опыте непосредственно была показана связь электрического и естественного магнетизма. Кроме того, Ампер изучил действие магнитного поля на проводники с током.

Подобно тому, как для исследования электрического поля используется пробный точечный заряд, для исследования магнитного поля используется точечное магнитное поле, созданное пробным током, циркулирующим в плоском замкнутом контуре очень малых размеров.

Возьмем такой контур с током I и поместим его в магнитное поле.

Основное свойство магнитного поля – способность действовать на движущиеся электрические заряды с определенной силой. В магнитном поле контур с током будет ориентироваться определенным образом. Ориентацию контура в пространстве будем характеризовать направлением нормали , связанной с движением тока правилом правого винта или «правилом буравчика» (рис. 1.2).

Итак, на контур с током в магнитном поле действует вращающий момент. Контур ориентируется в данной точке поля только одним способом. Примем положительное направление нормали за направление магнитного поля в данной точке. Вращающий момент прямо пропорционален величине тока I, площади контура S и синусу угла между направлением магнитного поля и нормали .

здесь М – вращающий момент, или момент силы, – магнитный момент контура (аналогично – электрический момент диполя).

Рис. 1.2

Направление вектора магнитного момента совпадает с положительным направлением нормали.

(1.1.1)

Отношение момента силы к магнитному моменту для данной точки магнитного поля будет одним и тем же и может служить характеристикой магнитного поля, названной магнитной индукцией:

(1.1.2)

или

где – вектор магнитной индукции, совпадающий с нормалью .

По аналогии с электрическим полем .

Магнитная индукция характеризует силовое действие магнитного поля на ток (аналогично, характеризует силовое действие электрического поля на заряд). – силовая характеристика магнитного поля, ее можно изобразить с помощью магнитных силовых линий.

Поскольку М – момент силы и – магнитный момент являются характеристиками вращательного движения, то можно предположить, что магнитное поле – вихревое.

Условились, за направление принимать направление северного конца магнитной стрелки. Силовые линии выходят из северного полюса, а входят, соответственно, в южный полюс магнита.

Для графического изображения полей удобно пользоваться силовыми линиями (линиями магнитной индукции). Линиями магнитной индукции называются кривые, касательные к которым в каждой точке совпадают с направлением вектора в этой точке.

Конфигурацию силовых линий легко установить с помощью мелких железных опилок (рис. 1.3), которые намагничиваются в исследуемом магнитном поле и ведут себя подобно маленьким магнитным стрелкам (поворачиваются вдоль силовых линий).

Рис. 1.3

Так было установлено, что силовые линии магнитного поля прямолинейного проводника с током – это концентрические окружности с центрами на проводнике, лежащие в плоскости, перпендикулярной проводнику.

Магнитные силовые линии всегда замкнуты (вихревое поле).

Рубрики: Сонник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *